Exploring short-range DFT energy corrections to multiconfigurational wave functions

David Casanova

Donostia International Physics Center (DIPC), 20018 Donostia, Euskadi, Spain IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Euskadi, Spain

Abstract

Electron correlation is a pivotal concept in quantum chemistry. Commonly, strong correlation effects are dealt with multiconfigurational wave function theories (WFT), while density functional theory (DFT) approximations efficiently recover instantaneous electron-electron interactions, i.e., dynamic correlation. Therefore, a variety of methodologies aim to take advantage of the distinct strengths of these two nearly antagonistic theories [1]. One of these strategies lies on merging WFT with DFT through the range separation of the Coulomb operator [2], in which DFT functionals evaluate the short-distance region, while long-range inter-electronic interactions are quantified by WFT (WFT-srDFT). During my presentation, I will try to uncover the limitations of WFT-srDFT in the characterization of close and openshell systems. In particular, I will discuss the importance of spin polarization effects in the (short-range) DFT exchange energy and I will show their importance in order to provide a balanced description between closed and open-shell configurations. I will introduce different strategies to account for spin polarization in the short range based on the definition of a spin polarized electron density and with the use of short-range exact exchange. The performance of these energy functionals will be tested in the dissociation of single bonds, the calculation of energy gaps in spin-triplet atoms and molecular diradicals, and the characterization of low-lying excited states [3,4].

- [1] S. Ghosh, P. Verma, C.J. Cramer, L. Gagliardi, D.G. Truhlar. *Chem. Rev.* **118**, 7249-7292 (2018).
- [2] A. Savin and H.-J. Flad. Int. J. Quantum Chem. 56, 327-332 (1995).
- [3] D. Casanova J. Chem. Phys. 148, 124118 (2018).
- [4] J.A. Rodríguez, A. Carreras, D. Casanova J. Chem. Phys. 154, 124116 (2021).