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Modeling the solvent environment in quantum chemical calculations is of great importance 

to understanding chemistry under real-world experimental conditions. However, rapid 

computational data set generation of solution-phase molecular properties at the quantum 

mechanical level of theory was previously hampered by the computational challenges in the 

implicit and explicit solvent models. We combine quantum chemistry calculations and machine 

learning (ML) models to improve the efficiency and accuracy of solvent models. 

Implicit solvent models are helpful for the quantum chemistry calculations of large 

molecules, but the computational overhead can still be significant. We exploit graphical processing 

units (GPUs) to accelerate both the electrostatic interaction integrals and the linear solver in the 

conductor-like polarizable continuum model (CPCM) and achieved 10X to 140X speedups for 

density functional theory (DFT) and time-dependent DFT. More recently, we focused on 

understanding the impacts of CPCM on the self-consistent field (SCF) convergence and DFT 

delocalization errors in large molecules. Although CPCM has been used as a simple remedy for 

DFT convergence issues in proteins, the mechanism, applicability, and consequences of using 

CPCM as an SCF accelerator are not thoroughly investigated. We found that CPCM’s SCF 

acceleration effects are related to the selective stabilization/destabilization of molecular orbitals 

and are most effective for proteins with charge separations. 

Explicit solvent models were rarely used for high throughput quantum chemistry 

calculations due to the required high degree of configuration sampling and the associated 

complicated set-up steps. We developed AutoSolvate, an open-source toolkit to streamline the 

workflow for QC calculation of explicitly solvated molecules, including solvated-structure 

generation, force field fitting, configuration sampling, and the final extraction of microsolvated 

cluster structures that QC packages can readily use to predict molecular properties of interest. 

Another major challenge in solution-phase computational discovery is the discrepancy between 

computationally predicted molecular properties and experimental measurements. Specifically, 

prominent errors persist in redox potential calculations compared to experimental measurements. 

We develop ML models to reduce the errors of redox potential calculations in both implicit and 

explicit solvent models. We compared and contrasted the performance of models built from the 

combination of various types of input features and ML methods and found the ML models effective 

in reducing the gap between computational and experimental redox potential values. The ML 

models also significantly reduced the sensitivity of the calculated results to DFT functional choice. 


