Electronic Transition Strengths: Connecting Theory and Experiments

Jorge Garcia-Alvarez, Astrid Tarleton, Samer Gozem

Department of Chemistry, Georgia State University, Atlanta, GA 30302, USA

Abstract

Electronic (UV-visible) transition strengths are experimentally reported as frequency-dependent molar extinction/attenuation coefficients $\varepsilon(v)$, absorption cross sections $\sigma(v)$, Einstein coefficients, etc. On the other hand, electronic structure calculations typically report excitation strengths as single-valued transition dipole moments (μ) or oscillator strengths (f). These quantities are all related. However, the comparison of single-valued quantities (e.g., μ and f) with frequency-dependent quantities (e.g., ε and σ) becomes complicated due to broadening and solvation effects, especially when multiple close electronic transitions give rise to overlapping spectral bands. We attempt to address these challenges as we present a benchmark study of oscillator strengths computed from time-dependent density functional theory with different functionals and excited-state wave function methods, compared to experimental data derived from the UV-visible spectra of 100 organic molecules in solution. We find that the calculations consistently overestimate the absorption strengths compared to experiments. The origin of this systematic error is discussed.

References

¹ Tarleton, A.S.; Garcia-Alvarez, J.C.; Wynn, A.; Awbrey, C.M.; Roberts, T.P.; Gozem, S. *J. Phys. Chem. A.* **2022**, *126*, 3, 435–443.