POSTER ABSTRACT

Superlinear Parallel Scaling of Second Order Møller-Plesset Perturbation Theory on Modern High Performance Computation Clusters through the Employment of Quadrature Schemes

B. Thomitzni^a and A. Dreuw^a

^aInterdisciplinary Center for Scientific Computing, Heidelberg University, Im Neuenheimer Feld 205A, D-69120 Heidelberg, GERMANY

Utilising the massively parallel, often heterogeneous, resources of modern high performance computation clusters for ab initio wave function-based methods is not straightforward. These methods typically have fundamental bottlenecks, e.g. they require basis set transformations of two electron integrals which involve a lot of data communication and have only bad parallelizability. This limits their scalability.

We followed the scheme behind the Q-MP2-OS formulation of Barca et al. [1], which involves independent evaluations of the recast energy integral through quadrature techniques.

Through this we arrived at a variant for the full Q-MP2 expression, which shows superlinear parallel scaling on modern high performance clusters. The independent evaluations allow for efficient exploitation of cache effects and minimal communication between nodes.

References

 G.M. Barca, S.C. McKenzie, N.J. Bloomfield, A.T. Gilbert and P.M. Gill, Journal of Chemical Theory and Computation 16 (3), 1568–1577 (2020).

CONTACT B. Thomitzni. Email: benjamin.thomitzni@iwr.uni-heidelberg.de