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Abstract 

 
The failure of approximate methods, e.g., density functional theory (DFT), to compute accurate 
electronic structures and energies for complex systems is well documented. While the newest 
collection of dispersion corrected and long-range corrected density functionals offer improved 
results, the errors in thermochemical properties computed with DFT are often greater than 5 
kcal/mol for many chemical processes. In this talk, we discuss a new fragmentation-based 
molecular representation framework “FragGraph” involving embedding fragment-wise 
fingerprints onto molecular graphs. Our QM/ML model is specifically designed for delta machine 
learning (Δ-ML) which learns the difference between properties calculated at two levels of theory. 
We aim to correct the deficiencies of approximate methods such as DFT to calculate molecular 
properties with an accuracy comparable to the most sophisticated and computationally intensive 
methods such as coupled cluster theory.  
 
Our framework is based on many of the ideas from machine learning, fragmentation, and error-
cancellation. Broadly, we combine the advantages of existing error-cancellation methods with 
standard molecular featurization techniques to develop a general framework for quantifying the 
molecular structure. More specifically, our method uses a molecular graph attributed with a 
collection of vectors representing each of the local environments of atoms based on fragments 
from the Connectivity-Based Hierarchy (CBH) of error cancellation schemes. The utility of our 
FragGraph representation is showcased in a QM/ML framework by using a state-of-the-art deep 
learning model to predict a variety of molecular properties. Each of the fragment-wise fingerprints 
are augmented by surrounding fragments through message-passing within a Graph Neural 
Network. Similar to standard fragmentation-based correction methods, each fragment ultimately 
provides a correction which, when summed, gives a total correction for a system. One of the key 
advantages of this approach is the inherent interpretability which allows the breakdown of the total 
Δ-ML corrections into individual group contributions elucidating the deficiencies of approximate 
levels of theory based on molecular fragments. 


